KEITA ALLEN (HE/HIM)

77 Massachusetts Avenue & Cambridge, MA 02139 kta@mit.edu & ktallen.github.io

MATHEMATICAL INTERESTS

Homotopy theory, algebraic topology, algebraic geometry.

EDUCATION

Massachusetts Institute of Technology	Cambridge, MA
<i>Candidate for Ph.D. in mathematics.</i>	Expected 2023 – 2028
Massachusetts Institute of Technology	Cambridge, MA
B.S. in mathematics, GPA: 5.0/5.0.	2019 - 2023
Southland College Prep Charter High School	Richton Park, IL
High school diploma.	2015 – 2019
SHORT-TERM VISITS	
Nagoya University Graduate School of Mathematics	Nagoya, Japan
Visiting researcher with Lars Hesselholt	Summer 2023
AWARDS AND FELLOWSHIPS	
National Defense Science and Engineering Graduate (NDSEG) Fellowship	2023 - 2026
MIT Math Dept. Teaching and Learning Award	May 2022
Presented by MIT Math Dept. for excellence in undergraduate teaching.	
UNDERGRADUATE PROJECTS	

Computing the homology of the motivic lambda algebra.The University of Chicago REUMentors: Mark Behrens, Peter MaySummer 2022

- Investigating generalizations of the Curtis algorithm (for computing the E_2 page of the Adams spectral sequence) to computing the E_2 page of the motivic Adams spectral sequences, over the base fields \mathbb{C} and \mathbb{R} .
- Writing computer program to facilitate generation of Curtis tables, which allow us to reconstruct the motivic Adams *E*₂ pages. Some code is available at https://github.com/ktallen/PyLambdaCalc.
- Preliminary draft available at http://math.uchicago.edu/~may/REU2022/REUPapers/Allen.pdf; paper presents a Curtis algorithm for computing the C-motivic Adams E_2 page.

MIT Math Dept.

Summer 2021

Complexity of computing the homotopy groups of spheres.

Mentors: Robert Burklund, Haynes Miller

- Studied complexity of algorithm outlined by E.H. Brown in *Finite Computability of Postnikov Complexes*, which allows for the computation of the homotopy groups of any space obtained as the realization of a finite simplicial set.
- Gave explicit bounds on the runtime of this computation in the case of finite homotopy groups, and as particular examples of spaces with infinite homotopy groups, gave explicit bound on the computation of homotopy groups of odd-dimensional spheres.

• Preliminary draft available at https://math.mit.edu/research/undergraduate/urop-plus/documents/ 2021/Allen.pdf.

EXPOSITORY TALKS

Chromatic homotopy theory and <i>p</i> -divisible groups.	September 2023
<i>Babytop seminar</i>	MIT
The lambda algebra in classical and motivic homotopy theory.	August 2022
<i>The University of Chicago REU</i>	The University of Chicago
Computing the homology of the \mathbb{C} -motivic lambda algebra.	July 2022
<i>Leadership Alliance National Symposium</i>	Virtual
Spectra and cohomology theories.	June 2022
<i>Chroma 2022 summer homotopy theory seminar</i>	Virtual

TEACHING

18.02 (multivariable calculus)	MIT Math Dept.
Undergraduate TA	Spring 2022
Taught twice-weekly recitation section, created problems for recitation, he	ld office hours and review

sessions, and graded. Please find some of the material I created here.
Student evaluations: *Stimulated interest*: 6.8/7.0, *Displayed thorough knowledge of subject material*: 6.9/7.0, *Helped me learn*: 7.0/7.0.

18.02A (accelerated multivariable calculus)	MIT Math Dept.
Undergraduate TA	January 2022

- Taught two twice-weekly recitation sections, held office hours and graded.
- Student evaluations: *Stimulated interest:* 6.7/7.0, *Displayed thorough knowledge of subject material:* 7.0/7.0, *Helped me learn:* 7.0/7.0.

	MIT Talented Scholars Resource Room	MIT Office of Minority Education
	Tutoring Facilitator	<i>Spring</i> 2021 – <i>Fall</i> 2022
•	Tutoring MIT students in math subjects through one-on-one app	pointments, facilitated group study
	sessions, walk-in office hours, and exam reviews. Courses tutored	include:
		10.00

18.01/A	single variable calculus	18.02/A	multivariable calculus	18.03	differential equations
18.04	complex variables	18.06	linear algebra	18.600	probability
18.701	abstract algebra I				
Overall rat	ting: 5.0/5.0.				

Interphase EDGE

MIT Office of Minority Education Summer 2020, 2021

Residential Calculus Facilitator

- TA for course in multivariable calculus, during residential program for rising MIT first-year students from underprivileged backgrounds.
- Responsible for crafting problem sets and recitation sheets, recitations twice weekly, holding office hours, and holding exam review sessions. Please find some of the material I helped create here.
- Hosted events as peer mentor/consultant for program participants in order to facilitate successful transition into MIT.

OTHER ACTIVITIES

Associate Advisor – MIT Office of Minority Education

· Leding activities for advising group of first-year students and acting as peer mentor.

Chroma 2022

Harvard/MIT summer seminar in stable/chromatic homotopy theory.

Helped organize an undergraduate-focused seminar in stable/chromatic homotopy theory. Covered • foundational topics in stable homotopy theory, building towards the chromatic point of view.

Grader – MIT Math

· Graded problem sets for 18.03 (differential equations).

SKILLS

Language **Programming & Markup** English (Native), Japanese (Native) Comfortable with Python, T_EX

Fall 2021 – Spring 2023

Summer 2022 Co-organizer

Spring 2020